stepwise $B_{10}H_{12} \cdot 2DMF \cdot d_7 + 2DMF$ $B_{10}H_{12} \cdot 2DMF + 2DMF - d_7 -$

At 85°, the methyl resonance peaks of $B_{10}H_{12} \cdot 2DMF$ decreased to a constant low intensity, but the positions remained unchanged. There was gradual formation of a solid phase.⁵ When a sample of $B_{10}H_{12} \cdot 2DMF$ and DMF- d_7 was inserted into an n.m.r. probe preheated to 120°, the methyl resonances corresponding to the released DMF rapidly collapsed whereas the methyl resonances corresponding to $B_{10}H_{12}\!\cdot\!2DMF$ did not.

The most reasonable conclusion to be drawn from this study is that the barrier to rotation about the C-N- $(CH_3)_2$ bond of $B_{10}H_{12} \cdot 2DMF$ is relatively large,⁷ consistent with the B-O-bonded structure of type A. Structure B is not consistent with a large rotational barrier. The peak assigned to a C=O stretching frequency⁵ in the infrared spectrum of $B_{10}H_{12} \cdot 2DMF$ can be just as well assigned to C=N stretching.

(7) The rate of rotation must be less than 18 sec. $^{-1}$ at 120°.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CORNELL UNIVERSITY, ITHACA, NEW YORK

Boroxine. A New Route to Borane Carbonyl¹

By Satish K. Wason and Richard F. Porter

Received August 23, 1965

The most common method for the preparation of borane carbonyl, BH₃CO (also referred to as carbon with diborane. We have recently observed that BH₃CO can be obtained from a rapid reaction of boroxine (H₃B₃O₃) and CO(g) at comparatively low pressures and temperatures. Under suitable conditions, this procedure gives yields of BH₃CO somewhat higher than that expected from an equilibrium reaction between B_2H_6 and $CO.^3$

Experimental Section

Samples of solid boroxine were prepared by passing $H_2O(g)$ over a mixture of B(s) and $B_2O_3(1)$ at a temperature of approximately 1100°. The apparatus and procedure have been described previously.⁴ An alternate procedure is to pass $H_2(g)$ over B-B2O3 mixtures.⁵ Solid boroxine was warmed to a temperature between -34 and 23° , and $B_2H_6(g)$, which is produced by the partial decomposition of the solid, was removed. Carbon monoxide at a known pressure was added to the reaction bulb, and the vessel was warmed to the final temperature. Additional $B_2H_{\theta}(g)$ is produced by the further decomposition of the solid as it is heated. An infrared spectrum of the product mixture, taken a few minutes later, indicated that BH3CO was formed (strong band at ~ 2170 cm.⁻¹)⁶ and that the reaction had occurred quite rapidly. The reaction vessel was then immersed in a liquid nitrogen trap, and the unreacted CO(g) was removed by pumping. Immediately after removing the excess CO(g), the infrared spectrum of the gaseous mixture containing $B_2H_6(g)$ and $BH_3CO(g)$ at a known pressure was recorded; the partial pressure of $B_2H_6(g)$ was determined from absorption intensity measurements and a calibration curve obtained from a series of measurements with pure $\mathrm{B}_{2}H_{6}(g).$ The partial pressures of BH₃CO were obtained by difference. The pressure of unreacted CO was calculated from the material balance relation: $P_{\rm CO}$ (initial) = $P_{\rm CO}$ (final) + $P_{\rm BH_3CO}$. The mixture of B₂H₆(g) and $BH_3CO(g)$ can be separated by vacuum distillation in a liquid nitrogen-isopentane slush bath⁷ at -160° . A summary of the data showing the yield of BH₃CO(g) obtained under different experimental conditions is given in Table I. Samples of BD₃CO

Initial Temp., °C.	Sample history	Initial $P_{\rm CO}, { m mm}.$	Final $P_{\rm CO}$, mm.	Final $P_{\mathbf{B}_2 \widehat{\mathbf{H}}_6}$, mm.	Final PBH₃CO, mm.	Рвн ₃ со (calcd.), ^a mm.
-29	Sample warmed to 23°; immediate analysis	134.0	102.4	68.4	31.6	20.4
+23	Sample warmed to 85°; immediate analysis at 23°	88.5	65.5	25.8	23.0	8.0
-28	Sample warmed to 80°; immediate analysis at 23°	76.0	47.5	104.0	28.5	11.7
+23	Sample warmed to 85°; immediate analysis at 23°	45.0	33.0	18.0	12.0	3.4
-32	Sample warmed to 23°; immediate analysis	88.0	60.0	56 .0	28.0	10.8
-28	Sample warmed to 23°; immediate analysis	211.0	145.0	64.0	66.0	28.1
+23	Sample warmed to 60°; immediate analysis at 23°	118.0	91.5	11.0	26.5	7.3
-34	Sample maintained at 23° for 60 hr.	219.0	177.8	117.8	41.2	46.3

TABLE I Data Illustrating the Yield of $BH_3CO(g)$ Obtained in the Reaction of Boroxine with CO

^a Calculated from equilibrium data for the reaction of B_2H_8 and CO (ref. 3) and highest reaction temperature.

monoxide borane), was first developed by Burg and Schlesinger² through a high-pressure reaction of CO(g) (3) A. B. Burg, ibid., 74, 3482 (1952).

- (4) R. F. Porter and S. K. Wason, J. Phys. Chem., 69, 2208 (1965).
- (5) L. Barton and D. Nicholls, Proc. Chem. Soc., 242 (1964).

(6) (a) G. W. Bethke and M. K. Wilson, J. Chem. Phys., 26, 1118 (1957);

(1) Work supported by the Army Research Office (Durham) and the Advanced Research Projects Agency.

⁽²⁾ A. B. Burg and H. I. Schlesinger, J. Am. Chem. Soc., 59, 780 (1937).

^{27, 978 (1957); (}b) S. Sundaram and F. F. Cleveland, ibid., 32, 166 (1960). (7) S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectry., 13, 256 (1964).